Pattern Recognition in Non-Kolmogorovian Structures

Federico Holik, Giuseppe Sergioli, Hector Freytes, Angelo Plastino

Onderzoeksoutput: Articlepeer review

9 Citaten (Scopus)

Samenvatting

We present a generalization of the problem of pattern recognition to arbitrary probabilistic models. This version deals with the problem of recognizing an individual pattern among a family of different species or classes of objects which obey probabilistic laws which do not comply with Kolmogorov’s axioms. We show that such a scenario accommodates many important examples, and in particular, we provide a rigorous definition of the classical and the quantum pattern recognition problems, respectively. Our framework allows for the introduction of non-trivial correlations (as entanglement or discord) between the different species involved, opening the door to a new way of harnessing these physical resources for solving pattern recognition problems. Finally, we present some examples and discuss the computational complexity of the quantum pattern recognition problem, showing that the most important quantum computation algorithms can be described as non-Kolmogorovian pattern recognition problems.

Originele taal-2English
Pagina's (van-tot)119-132
Aantal pagina's14
TijdschriftFoundations of Science
Volume23
Nummer van het tijdschrift1
DOI's
StatusPublished - mrt 2018

Vingerafdruk

Duik in de onderzoeksthema's van 'Pattern Recognition in Non-Kolmogorovian Structures'. Samen vormen ze een unieke vingerafdruk.

Citeer dit