Poisson-Lie U-duality in Exceptional Field Theory

Emanuel Malek, Daniel C. Thompson

Onderzoeksoutput: Articlepeer review

41 Citaten (Scopus)

Samenvatting

Poisson-Lie duality provides an algebraic extension of conventional Abelian and non-Abelian target space dualities of string theory and has seen recent applications in constructing quantum group deformations of holography. Here we demonstrate a natural upgrading of Poisson-Lie to the context of M-theory using the tools of exceptional field theory. In particular, we propose how the underlying idea of a Drinfeld double can be generalised to an algebra we call an exceptional Drinfeld algebra. These admit a notion of “maximally isotropic subalgebras” and we show how to define a generalised Scherk-Schwarz truncation on the associated group manifold to such a subalgebra. This allows us to define a notion of Poisson-Lie U-duality. Moreover, the closure conditions of the exceptional Drinfeld algebra define natural analogues of the cocycle and co-Jacobi conditions arising in Drinfeld double. We show that upon making a further coboundary restriction to the cocycle that an M-theoretic extension of Yang-Baxter deformations arise. We remark on the application of this construction as a solution-generating technique within supergravity.

Originele taal-2English
Artikelnummer58
Aantal pagina's22
TijdschriftJHEP
Volume2020
Nummer van het tijdschrift4
DOI's
StatusPublished - 1 apr 2020

Vingerafdruk

Duik in de onderzoeksthema's van 'Poisson-Lie U-duality in Exceptional Field Theory'. Samen vormen ze een unieke vingerafdruk.

Citeer dit