Projecten per jaar
Samenvatting
Poisson-Lie duality provides an algebraic extension of conventional Abelian and non-Abelian target space dualities of string theory and has seen recent applications in constructing quantum group deformations of holography. Here we demonstrate a natural upgrading of Poisson-Lie to the context of M-theory using the tools of exceptional field theory. In particular, we propose how the underlying idea of a Drinfeld double can be generalised to an algebra we call an exceptional Drinfeld algebra. These admit a notion of “maximally isotropic subalgebras” and we show how to define a generalised Scherk-Schwarz truncation on the associated group manifold to such a subalgebra. This allows us to define a notion of Poisson-Lie U-duality. Moreover, the closure conditions of the exceptional Drinfeld algebra define natural analogues of the cocycle and co-Jacobi conditions arising in Drinfeld double. We show that upon making a further coboundary restriction to the cocycle that an M-theoretic extension of Yang-Baxter deformations arise. We remark on the application of this construction as a solution-generating technique within supergravity.
Originele taal-2 | English |
---|---|
Artikelnummer | 58 |
Aantal pagina's | 22 |
Tijdschrift | JHEP |
Volume | 2020 |
Nummer van het tijdschrift | 4 |
DOI's | |
Status | Published - 1 apr 2020 |
Vingerafdruk
Duik in de onderzoeksthema's van 'Poisson-Lie U-duality in Exceptional Field Theory'. Samen vormen ze een unieke vingerafdruk.-
SRP8: SRP (Zwaartepunt): Hoge-Energiefysica
D'Hondt, J., Van Eijndhoven, N., Craps, B. & Buitink, S.
1/11/12 → 31/10/24
Project: Fundamenteel
-
FWOAL903: Dualiteit, Meetkunde en Tijdruimte
Sevrin, A., Blair, C. & Thompson, D.
1/01/19 → 31/12/22
Project: Fundamenteel