Rational conjugacy of torsion units in integral group rings of non-solvable groups

Leo Margolis, Andreas Bächle

Onderzoeksoutput: Articlepeer review

15 Citaten (Scopus)

Samenvatting

We introduce a new method to study rational conjugacy of torsion units in integral group rings using integral and modular representation theory. Employing this new method, we verify the first Zassenhaus conjecture for the group PSL(2, 19). We also prove the Zassenhaus conjecture for PSL(2, 23). In a second application we show that there are no normalized units of order 6 in the integral group rings of M 10 and PGL(2, 9). This completes the proof of a theorem of Kimmerle and Konovalov that shows that the prime graph question has an affirmative answer for all groups having an order divisible by at most three different primes.

Originele taal-2English
Pagina's (van-tot)813-830
Aantal pagina's18
TijdschriftProceedings of the Edinburgh Mathematical Society
Volume60
Nummer van het tijdschrift4
DOI's
StatusPublished - nov 2017

Vingerafdruk

Duik in de onderzoeksthema's van 'Rational conjugacy of torsion units in integral group rings of non-solvable groups'. Samen vormen ze een unieke vingerafdruk.

Citeer dit