Projecten per jaar
Samenvatting
Successful data representation is a fundamental factor in machine learning based medical imaging analysis. Deep Learning (DL) has taken an essential role in robust representation learning. However, the inability of deep models to generalize to unseen data can quickly overfit intricate patterns. Thereby, the importance of implementing strategies to aid deep models in discovering useful priors from data to learn their intrinsic properties. Our model, which we call a dual role network (DRN), uses a dependency maximization approach based on Least Squared Mutual Information (LSMI). LSMI leverages dependency measures to ensure representation invariance and local smoothness. While prior works have used information theory dependency measures like mutual information,
these are known to be computationally expensive due to the density estimation step. In contrast, our proposed DRN with LSMI formulation does not require the density estimation step and can be used as an alternative to approximate mutual information. Experiments on the CT based COVID-19 Detection and COVID-19 Severity Detection Challenges of the 2nd COV19D competition [24] demonstrate the effectiveness of our method compared to the baseline method of such competition.
these are known to be computationally expensive due to the density estimation step. In contrast, our proposed DRN with LSMI formulation does not require the density estimation step and can be used as an alternative to approximate mutual information. Experiments on the CT based COVID-19 Detection and COVID-19 Severity Detection Challenges of the 2nd COV19D competition [24] demonstrate the effectiveness of our method compared to the baseline method of such competition.
Originele taal-2 | English |
---|---|
Titel | Lecture Notes in Computer Science |
Subtitel | Computer Vision – ECCV 2022 Workshops |
Redacteuren | Leonid Karlinsky, Tomer Michaeli, Ko Nishino |
Uitgeverij | Springer, Cham |
Pagina's | 605-620 |
Aantal pagina's | 16 |
Volume | 13807 |
ISBN van elektronische versie | 978-3-031-25082-8 |
ISBN van geprinte versie | 978-3-031-25081-1 |
DOI's | |
Status | Published - 23 feb 2023 |
Publicatie series
Naam | Lecture Notes in Computer Science |
---|---|
Volume | 13807 LNCS |
ISSN van geprinte versie | 0302-9743 |
ISSN van elektronische versie | 1611-3349 |
Bibliografische nota
Publisher Copyright:© 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Vingerafdruk
Duik in de onderzoeksthema's van 'Representation Learning with Information Theory to Detect COVID-19 and its Severity'. Samen vormen ze een unieke vingerafdruk.Projecten
- 2 Afgelopen
-
VLIR409: (COVID-19 PROMPT) Naar precisieve geneeskunde voor het voorspellen van de respons op de behandeling van Covid-19 in Cuba
Deligiannis, N., Diaz Berenguer, A. & Van Damme, A.
1/09/22 → 31/08/24
Project: Fundamenteel
-
EUAR46: H2020:icovid: AI-gebaseerde CT-analyse van de borst voor snelle COVID-diagnose en prognose
Vandemeulebroucke, J., De Mey, J., Sahli, H. & Deligiannis, N.
1/09/20 → 28/02/23
Project: Fundamenteel
Onderzoekersoutput
- 1 Citaties
- 3 Article
-
Semi-supervised medical image classification via distance correlation minimization and graph attention regularization
Diaz Berenguer, A., Kvasnytsia, M., Bossa Bossa, M. N., Mukherjee, T., Deligiannis, N. & Sahli, H., mei 2024, In: Medical Image Analysis. 94, blz. 1-16 16 blz., 103107.Onderzoeksoutput: Article › peer review
Open Access6 Citaten (Scopus) -
Representation Learning with Information Theory for COVID-19 Detection
Diaz Berenguer, A., Mukherjee, T., Bossa Bossa, M. N., Deligiannis, N. & Sahli, H., 4 jul 2022, In: ArXiv.org. 2022, blz. 1-10 10 blz.Onderzoeksoutput: Article
-
Explainable-by-design Semi-Supervised Representation Learning for COVID-19 Diagnosis from CT Imaging
Berenguer, A. D., Sahli, H., Joukovsky, B., Kvasnytsia, M., Dirks, I., Alioscha-Perez, M., Deligiannis, N., Gonidakis, P., Sánchez, S. A., Brahimetaj, R., Papavasileiou, E., Chana, J. C-W., Li, F., Song, S., Yang, Y., Tilborghs, S., Willems, S., Eelbode, T., Bertels, J., Vandermeulen, D. & 20 anderen, , 2 dec 2020, In: ArXiv.org. 2020, 20 blz.Onderzoeksoutput: Article
Bestand
Activiteiten
- 1 Talk or presentation at a conference
-
Representation Learning with Information Theory to Detect COVID-19 and its Severity
Abel Diaz Berenguer (Speaker)
24 okt 2022Activiteit: Talk or presentation at a conference