Representation theory of the reflection equation algebra II: Theory of shapes

Kenny De Commer, Stephen Moore

Onderzoeksoutput: Articlepeer review

Samenvatting

We continue our study of the representations of the Reflection Equation Algebra (=REA) on Hilbert spaces, focusing again on the REA constructed from the R-matrix associated to the standard q-deformation of GL(N,C) for 0<q<1. We consider the Poisson structure appearing as the classical limit of the R-matrix, and parametrize the symplectic leaves explicitly in terms of a type of matrix we call a shape matrix. We then introduce a quantized version of the shape matrix for the REA, and show that each irreducible representation of the REA has a unique shape.

Originele taal-2English
Pagina's (van-tot)261-288
Aantal pagina's28
TijdschriftJournal of Algebra
Volume664
Nummer van het tijdschriftB
DOI's
StatusPublished - 15 feb. 2025

Bibliografische nota

Publisher Copyright:
© 2024 The Authors

Citeer dit