Scaling machine learning for target prediction in drug discovery using Apache Spark

Dries Harnie, Mathijs Saey, Alexander Vapirev, Jörg Kurt Wegner, Andrey Gedich, Marvin Steijaert, Hugo Ceulemans, Roel Wuyts, Wolfgang De Meuter

Onderzoeksoutput: Article

33 Citaten (Scopus)


In the context of drug discovery, a key problem is the identification of candidate molecules that affect proteins associated with diseases. Inside Janssen Pharmaceutica, the Chemogenomics project aims to derive new candidates from existing experiments through a set of machine learning predictor programs, written in single-node C++. These programs take a long time to run and are inherently parallel, but do not use multiple nodes. We show how we reimplemented the pipeline using Apache Spark, which enabled us to lift the existing programs to a multi-node cluster without making changes to the predictors. We have benchmarked our Spark pipeline against the original, which shows almost linear speedup up to 8 nodes. In addition, our pipeline generates fewer intermediate files while allowing easier checkpointing and monitoring.
Originele taal-2English
Pagina's (van-tot)409-417
TijdschriftFuture Generation Computer Systems
StatusPublished - 24 mei 2016


Duik in de onderzoeksthema's van 'Scaling machine learning for target prediction in drug discovery using Apache Spark'. Samen vormen ze een unieke vingerafdruk.

Citeer dit