Self-Adaptive Ageing Models for Optimal Management and Planning of Assets in Microgrids

Onderzoeksoutput: Chapter

Samenvatting

The evolution towards decentralization of the electricity grids leads towards a large increase of new and flexible devices in low- and medium-voltage smart grid environments such as microgrids and energy communities. In this type of environment, an advanced, dynamic and autonomous asset management system will be essential to ensure grid optimal performance. Self-adaptive ageing modelling algorithms using real-life historical operational data of assets to assess the future capacity, remaining useful life and optimal operational profiles are essential tools in such a context. This paper will propose a modelling methodology for this purpose, based on machine learning techniques using historical data of assets operated in real-life circumstances and with a limited knowledge of asset properties. The process flow of the methodology is explained in detail, as well as the tangible outputs that are generated. The method was applied on a photovoltaic system in a real-life environment and first experimental results are discussed.
Originele taal-2English
TitelFuture Energy
SubtitelChallenge, Opportunity and Sustainability
RedacteurenXiaolin Wang
UitgeverijSpringer Cham
Hoofdstuk12
Pagina's141-151
Aantal pagina's11
ISBN van elektronische versie978-3-031-33906-6
ISBN van geprinte versie978-3-031-33905-9, 978-3-031-33908-0
DOI's
StatusPublished - 2023

Publicatie series

NaamGreen Energy and Technology
UitgeverijSpringer
ISSN van geprinte versie1865-3529
ISSN van elektronische versie1865-3537

Bibliografische nota

Publisher Copyright:
© 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

Vingerafdruk

Duik in de onderzoeksthema's van 'Self-Adaptive Ageing Models for Optimal Management and Planning of Assets in Microgrids'. Samen vormen ze een unieke vingerafdruk.

Citeer dit