Samenvatting
We study codewords of small weight in the codes arising from Desarguesian projective planes. We first of all improve the results of K. Chouinard on codewords of small weight in the codes arising from PG(2, p), p prime. Chouinard characterized all the codewords up to weight 2p in these codes. Using a particular basis for this code, described by Moorhouse, we characterize all the codewords of weight up to 2p + (p¿1)/2 if p ¿ 11. We then study the codes arising from $$PG(2, q=q_0^3)$$ . In particular, for q 0 = p prime, p ¿ 7, we prove that the codes have no codewords with weight in the interval [q + 2, 2q ¿ 1]. Finally, for the codes of PG(2, q), q = p h , p prime, h ¿ 4, we present a discrete spectrum for the weights of codewords with weights in the interval [q + 2, 2q ¿ 1]. In particular, we exclude all weights in the interval [3q/2, 2q ¿ 1].
Originele taal-2 | English |
---|---|
Pagina's (van-tot) | 25-43 |
Aantal pagina's | 19 |
Tijdschrift | Designs, Codes and Cryptography |
Volume | 46 |
Nummer van het tijdschrift | 1 |
Status | Published - 2008 |