Small weight codewords in the codes arising from Desarguesian projective planes

Geertrui Van De Voorde, Leo Storme, Veerle Fack, Szabolcs L. Facsali

Onderzoeksoutput: Articlepeer review

17 Citaten (Scopus)

Samenvatting

We study codewords of small weight in the codes arising from Desarguesian projective planes. We first of all improve the results of K. Chouinard on codewords of small weight in the codes arising from PG(2, p), p prime. Chouinard characterized all the codewords up to weight 2p in these codes. Using a particular basis for this code, described by Moorhouse, we characterize all the codewords of weight up to 2p + (p¿1)/2 if p ¿ 11. We then study the codes arising from $$PG(2, q=q_0^3)$$ . In particular, for q 0 = p prime, p ¿ 7, we prove that the codes have no codewords with weight in the interval [q + 2, 2q ¿ 1]. Finally, for the codes of PG(2, q), q = p h , p prime, h ¿ 4, we present a discrete spectrum for the weights of codewords with weights in the interval [q + 2, 2q ¿ 1]. In particular, we exclude all weights in the interval [3q/2, 2q ¿ 1].
Originele taal-2English
Pagina's (van-tot)25-43
Aantal pagina's19
TijdschriftDesigns, Codes and Cryptography
Volume46
Nummer van het tijdschrift1
StatusPublished - 2008

Vingerafdruk

Duik in de onderzoeksthema's van 'Small weight codewords in the codes arising from Desarguesian projective planes'. Samen vormen ze een unieke vingerafdruk.

Citeer dit