Some non-existence results on m-ovoids in classical polar spaces

Jonathan Mannaert, Jan De Beule, Valentino Smaldore

Onderzoeksoutput: Articlepeer review


In this paper we develop non-existence results for $m$-ovoids in the classical polar spaces
$\q^-(2r+1,q), \w(2r-1,q)$ and $\h(2r,q^2)$ for $r>2$. In Bamberg et al. (2009) a lower bound on
$m$ for the existence of $m$-ovoids of $\h(4,q^2)$ is found by using
the connection between $m$-ovoids, two-character sets, and strongly regular graphs. This approach
is generalized in Bamberg et al. (2012) for the polar spaces $\q^-(2r+1,q), \w(2r-1,q)$ and $\h(2r,q^2)$, $r>2$.
In \cite{BDS} an improvement for the particular case $\h(4,q^2)$ is obtained by exploiting the algebraic
structure of the collinearity graph, and using the characterization of an $m$-ovoid as an intruiging set.
In this paper, we use an approach based on geometrical and combinatorial arguments, inspired by
the results from Gavrilyuk et al. (2023), to improve the bounds from Bamberg et al. (2007) .
Originele taal-2English
TijdschriftEuropean Journal of Combinatorics
StatusPublished - mei 2024

Bibliografische nota

Publisher Copyright:
© 2024 Elsevier Ltd


Duik in de onderzoeksthema's van 'Some non-existence results on m-ovoids in classical polar spaces'. Samen vormen ze een unieke vingerafdruk.

Citeer dit