Stationary localized structures and the effect of the delayed feedback in the Brusselator model

B. Kostet, Mustapha Tlidi, F. Tabbert, T. Frohoff-Hulsmann, S.v. Gurevich, E. Averlant, R. Rojas, Giorgio Sonnino, Krassimir Panayotov

Onderzoeksoutput: Article

2 Citaten (Scopus)

Samenvatting

The Brusselator reaction-diffusion model is a paradigm for the understanding of dissipative structures in systems out of equilibrium. In the first part of this paper, we investigate the formation of stationary localized structures in the Brusselator model. By using numerical continuation methods in two spatial dimensions, we establish a bifurcation diagram showing the emergence of localized spots. We characterize the transition from a single spot to an extended pattern in the form of squares. In the second part, we incorporate delayed feedback control and show that delayed feedback can induce a spontaneous motion of both localized and periodic dissipative structures. We characterize this motion by estimating the threshold and the velocity of the moving dissipative structures.
Originele taal-2English
Artikelnummer20170385
TijdschriftPhilosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences
Volume376
Nummer van het tijdschrift2135
DOI's
StatusPublished - 28 dec 2018

Vingerafdruk

Duik in de onderzoeksthema's van 'Stationary localized structures and the effect of the delayed feedback in the Brusselator model'. Samen vormen ze een unieke vingerafdruk.

Citeer dit