Structural basis of sodium-dependent bile salt uptake into the liver

Kapil Goutam, Francesco S Ielasi, Els Pardon, Jan Steyaert, Nicolas Reyes

Onderzoeksoutput: Article


The liver takes up bile salts from blood to generate bile, enabling absorption of lipophilic nutrients and excretion of metabolites and drugs1. Human Na+-taurocholate co-transporting polypeptide (NTCP) is the main bile salt uptake system in liver. NTCP is also the cellular entry receptor of human hepatitis B and D viruses2,3 (HBV/HDV), and has emerged as an important target for antiviral drugs4. However, the molecular mechanisms underlying NTCP transport and viral receptor functions remain incompletely understood. Here we present cryo-electron microscopy structures of human NTCP in complexes with nanobodies, revealing key conformations of its transport cycle. NTCP undergoes a conformational transition opening a wide transmembrane pore that serves as the transport pathway for bile salts, and exposes key determinant residues for HBV/HDV binding to the outside of the cell. A nanobody that stabilizes pore closure and inward-facing states impairs recognition of the HBV/HDV receptor-binding domain preS1, demonstrating binding selectivity of the viruses for open-to-outside over inward-facing conformations of the NTCP transport cycle. These results provide molecular insights into NTCP 'gated-pore' transport and HBV/HDV receptor recognition mechanisms, and are expected to help with development of liver disease therapies targeting NTCP.

Originele taal-2English
StatusE-pub ahead of print - 2022

Bibliografische nota

© 2022. The Author(s).


Duik in de onderzoeksthema's van 'Structural basis of sodium-dependent bile salt uptake into the liver'. Samen vormen ze een unieke vingerafdruk.

Citeer dit