Subgroup isomorphism problem for units of integral group rings

Onderzoeksoutput: Articlepeer review

5 Citaten (Scopus)

Samenvatting

The Subgroup Isomorphism Problem for Integral Group Rings asks for which finite groups U it is true that if U is isomorphic to a subgroup of V(ZG), the group of normalized units of the integral group ring of the finite group G, it must be isomorphic to a subgroup of G. The smallest groups known not to satisfy this property are the counterexamples to the Isomorphism Problem constructed by M. Hertweck. However, the only groups known to satisfy it are cyclic groups of prime power order and elementary-abelian p-groups of rank 2. We give a positive solution to the Subgroup Isomorphism Problem for C4×C2. Moreover, we prove that if the Sylow 2-subgroup of G is a dihedral group, any 2-subgroup of V(ZG) is isomorphic to a subgroup of G.
Originele taal-2English
Pagina's (van-tot)289-307
Aantal pagina's19
TijdschriftJ. Group Theory
Volume20
Nummer van het tijdschrift2
DOI's
StatusPublished - 2016

Vingerafdruk

Duik in de onderzoeksthema's van 'Subgroup isomorphism problem for units of integral group rings'. Samen vormen ze een unieke vingerafdruk.

Citeer dit