System Identification in a Real World

Joannes Schoukens, Anna Marconato, Rik Pintelon, Yves Rolain, Maarten Schoukens, Koen Tiels, Laurent Vanbeylen, Gerd Vandersteen, Anne Van Mulders

Onderzoeksoutput: Conference paper

12 Citaten (Scopus)

Samenvatting

In this paper we discuss how to identify a mathematical model for a (non)linear dynamic system starting from experimental data. In the initial step, the frequency response function is measured, together with the properties of the disturbing noise and the nonlinear distortions. This uses nonparametric preprocessing techniques that require very little user interaction. On the basis of this information, the user can decide on an objective basis, in an early phase of the modelling process, to use either a simple linear approximation framework, or to build a more involved nonlinear model. We discuss both options here: i) Identification of linear models in the presence of nonlinear distortions, including the generation of error bounds; and ii) Identification of a nonlinear model. For the latter, a double approach is proposed, using either unstructured nonlinear state space models, or highly structured block oriented nonlinear models. The paper is written from a users perspective.
Originele taal-2English
Titel13th International Workshop on Advanced Motion Control (AMC), Yokohama, Japan, 14-16 March, 2014
UitgeverijIEEE
Pagina's1-9
ISBN van geprinte versie978-1-4799-2323-6
StatusPublished - 14 mrt. 2014
Evenement13th IEEE International Workshop on Advanced Motion Control, AMC 2014 - Yokohama, Japan
Duur: 14 mrt. 201416 mrt. 2014

Workshop

Workshop13th IEEE International Workshop on Advanced Motion Control, AMC 2014
Land/RegioJapan
StadYokohama
Periode14/03/1416/03/14

Vingerafdruk

Duik in de onderzoeksthema's van 'System Identification in a Real World'. Samen vormen ze een unieke vingerafdruk.

Citeer dit