TY - JOUR
T1 - The effect of post-Exercise cryotherapy on recovery characteristics : A systematic review and meta-analysis
AU - Hohenauer, Erich
AU - Taeymans, Jan
AU - Baeyens, Jean-Pierre
AU - Clarys, Peter
AU - Clijsen, Ron
PY - 2015
Y1 - 2015
N2 - The aim of this review and meta-analysis was to critically determine the possible effects of different cooling applications, compared to non-cooling, passive post-exercise strategies, on recovery characteristics after various, exhaustive exercise protocols up to 96 hours (hrs). A total of n = 36 articles were processed in this study. To establish the research question, the PICO-model, according to the PRISMA guidelines was used. The Cochrane's risk of bias tool, which was used for the quality assessment, demonstrated a high risk of performance bias and detection bias. Meta-analyses of subjective characteristics, such as delayed-onset muscle soreness (DOMS) and ratings of perceived exertion (RPE) and objective characteristics like blood plasma markers and blood plasma cytokines, were performed. Pooled data from 27 articles revealed, that cooling and especially cold water immersions affected the symptoms of DOMS significantly, compared to the control conditions after 24 hrs recovery, with a standardized mean difference (Hedges' g) of -0.75 with a 95% confidence interval (CI) of -1.20 to -0.30. This effect remained significant after 48 hrs (Hedges' g: -0.73, 95% CI: -1.20 to -0.26) and 96 hrs (Hedges' g: -0.71, 95% CI: -1.10 to -0.33). A significant difference in lowering the symptoms of RPE could only be observed after 24 hrs of recovery, favouring cooling compared to the control conditions (Hedges' g: -0.95, 95% CI: -1.89 to -0.00). There was no evidence, that cooling affects any objective recovery variable in a significant way during a 96 hrs recovery period.
AB - The aim of this review and meta-analysis was to critically determine the possible effects of different cooling applications, compared to non-cooling, passive post-exercise strategies, on recovery characteristics after various, exhaustive exercise protocols up to 96 hours (hrs). A total of n = 36 articles were processed in this study. To establish the research question, the PICO-model, according to the PRISMA guidelines was used. The Cochrane's risk of bias tool, which was used for the quality assessment, demonstrated a high risk of performance bias and detection bias. Meta-analyses of subjective characteristics, such as delayed-onset muscle soreness (DOMS) and ratings of perceived exertion (RPE) and objective characteristics like blood plasma markers and blood plasma cytokines, were performed. Pooled data from 27 articles revealed, that cooling and especially cold water immersions affected the symptoms of DOMS significantly, compared to the control conditions after 24 hrs recovery, with a standardized mean difference (Hedges' g) of -0.75 with a 95% confidence interval (CI) of -1.20 to -0.30. This effect remained significant after 48 hrs (Hedges' g: -0.73, 95% CI: -1.20 to -0.26) and 96 hrs (Hedges' g: -0.71, 95% CI: -1.10 to -0.33). A significant difference in lowering the symptoms of RPE could only be observed after 24 hrs of recovery, favouring cooling compared to the control conditions (Hedges' g: -0.95, 95% CI: -1.89 to -0.00). There was no evidence, that cooling affects any objective recovery variable in a significant way during a 96 hrs recovery period.
KW - The effect of post-Exercise cryotherapy on recovery characteristics : A systematic review and meta-anlysis
U2 - 10.1371/journal.pone.0139028
DO - 10.1371/journal.pone.0139028
M3 - Article
VL - 10
JO - PLoS ONE
JF - PLoS ONE
SN - 1932-6203
IS - 9
ER -