The formation of peak rings in large impact craters

Joanna V. Morgan, Sean P. S. Gulick, Timothy Bralower, Elise Chenot, Gail Christeson, Philippe Claeys, Charles Cockell, Gareth S. Collins, Marco J. L. Coolen, Ludovic Ferrière, Catalina Gebhardt, Kazuhisa Goto, Heather Jones, David A. Kring, Erwan Le Ber, Johanna Lofi, Xiao Long, Christopher Lowery, Claire Mellett, Rubén Ocampo-TorresGordon R. Osinski, Ligia Perez-Cruz, Annemarie Pickersgill, Michael Poelchau, Auriol Rae, Cornelia Rasmussen, Mario Rebolledo-Vieyra, Ulrich Riller, Honami Sato, Douglas R. Schmitt, Jan Smit, Sonia Tikoo, Naotaka Tomioka, Jaime Urrutia-Fucugauchi, Michael Whalen, Axel Wittmann, Kosei E. Yamaguchi, William Zylberman

Onderzoeksoutput: Articlepeer review

185 Citaten (Scopus)

Samenvatting

The Chicxulub impact crater, known for its link to the demise of the dinosaurs, also provides an opportunity to study rocks from a large impact structure. Large impact craters have “peak rings” that define a complex crater morphology. Morgan et al. looked at rocks from a drilling expedition through the peak rings of the Chicxulub impact crater (see the Perspective by Barton). The drill cores have features consistent with a model that postulates that a single over-heightened central peak collapsed into the multiple-peak-ring structure. The validity of this model has implications for far-ranging subjects, from how giant impacts alter the climate on Earth to the morphology of crater-dominated planetary surfaces.Science, this issue p. 878; see also p. 836Large impacts provide a mechanism for resurfacing planets through mixing near-surface rocks with deeper material. Central peaks are formed from the dynamic uplift of rocks during crater formation. As crater size increases, central peaks transition to peak rings. Without samples, debate surrounds the mechanics of peak-ring formation and their depth of origin. Chicxulub is the only known impact structure on Earth with an unequivocal peak ring, but it is buried and only accessible through drilling. Expedition 364 sampled the Chicxulub peak ring, which we found was formed from uplifted, fractured, shocked, felsic basement rocks. The peak-ring rocks are cross-cut by dikes and shear zones and have an unusually low density and seismic velocity. Large impacts therefore generate vertical fluxes and increase porosity in planetary crust.
Originele taal-2English
Pagina's (van-tot)878-882
Aantal pagina's5
TijdschriftScience
Volume354
Nummer van het tijdschrift6314
DOI's
StatusPublished - 17 nov. 2016

Vingerafdruk

Duik in de onderzoeksthema's van 'The formation of peak rings in large impact craters'. Samen vormen ze een unieke vingerafdruk.

Citeer dit