The status of the Zassenhaus conjecture for small groups

Leo Margolis, Andreas Bächle, Allen Herman, Alexander Konovalov, Gurmail Singh

Onderzoeksoutput: Articlepeer review

8 Citaten (Scopus)

Samenvatting

We identify all small groups of order up to 288 in the GAP Library for which the Zassenhaus conjecture on rational conjugacy of units of finite order in the integral group ring cannot be established by an existing method. The groups must first survive all theoretical sieves and all known restrictions on partial augmentations (the HeLP+ method). Then two new computational methods for verifying the Zassenhaus conjecture are applied to the unresolved cases, which we call the quotient method and the partially central unit construction method. To the cases that remain we attempt an assortment of special arguments available for units of certain orders and the lattice method. In the end, the Zassenhaus conjecture is verified for all groups of order less than 144 and we give a list of all remaining cases among groups of orders 144 to 287.
Originele taal-2English
Pagina's (van-tot)431-436
Aantal pagina's6
TijdschriftExperimental Mathematics
Volume27
Nummer van het tijdschrift4
DOI's
StatusPublished - 2 okt 2018

Vingerafdruk

Duik in de onderzoeksthema's van 'The status of the Zassenhaus conjecture for small groups'. Samen vormen ze een unieke vingerafdruk.

Citeer dit