Transcriptome-Guided Identification of Pectin Methyl-Esterase-Related Enzymes and Novel Molecular Processes Effectuating the Hard-to-Cook Defect in Common Bean (Phaseolus vulgaris L.)

Mary Esther Muyoka Toili, Ramon de Koning, Raphaël Kiekens, Nelson Ndumba, Samuel Wahome, Sylvester Anami, Stephen Mwangi Githiri, Geert Angenon

Onderzoeksoutput: Articlepeer review

2 Citaten (Scopus)
52 Downloads (Pure)

Samenvatting

The hard-to-cook defect in common beans is dictated by the ability to achieve cell separation during cooking. Hydrolysis of pectin methyl-esters by the pectin methyl-esterase (PME) enzyme influences cell separation. However, the contributions of the PME enzyme and the cell wall to the hard-to-cook defect have not been studied using molecular tools. We compared relevant molecular processes in fast- and slow-cooking bean varieties to understand the mechanisms underpinning the hard-to-cook defect. A PME spectrophotometric assay showed minor differences in enzyme activity between varieties. Meanwhile, a PME HMMER search in the P. vulgaris genome unveiled 113 genes encoding PMEs and PME inhibitors (PMEIs). Through RNA sequencing, we compared the gene expression of the PME-related genes in both varieties during seed development. A PME (Phvul010g080300) and PMEI gene (Phvul005g007600) showed the highest expression in the fast- and slow-cooking beans, respectively. We further identified 2132 differentially expressed genes (DEGs). Genes encoding cell-wall-related enzymes, mainly glycosylphosphatidylinositol mannosyltransferase, xyloglucan O-acetyltransferase, pectinesterase, and callose synthase, ranked among the top DEGs, indicating novel relations to the hard-to-cook defect. Gene ontology mapping revealed hydrolase activity and protein phosphorylation as functional categories with the most abundant upregulated DEGs in the slow-cooking bean. Additionally, the cell periphery contained 8% of the DEGs upregulated in the slow-cooking bean. This study provides new insights into the role of pectin methyl-esterase-related genes and novel cell wall processes in the occurrence of the hard-to-cook defect.
Originele taal-2English
Artikelnummer1692
Aantal pagina's28
TijdschriftFoods
Volume11
Nummer van het tijdschrift12
DOI's
StatusPublished - 9 jun 2022

Vingerafdruk

Duik in de onderzoeksthema's van 'Transcriptome-Guided Identification of Pectin Methyl-Esterase-Related Enzymes and Novel Molecular Processes Effectuating the Hard-to-Cook Defect in Common Bean (Phaseolus vulgaris L.)'. Samen vormen ze een unieke vingerafdruk.

Citeer dit