TY - JOUR
T1 - Troponin T in COVID-19 hospitalized patients
T2 - Kinetics matter
AU - Luchian, Maria-Luiza
AU - Motoc, Andreea Iulia
AU - Lochy, Stijn
AU - Magne, Julien
AU - Roosens, Bram
AU - Belsack, Dries
AU - Van den Bussche, Karen
AU - von Kemp, Berlinde
AU - Galloo, Xavier
AU - François, Clara
AU - Scheirlynck, Esther
AU - Boeckstaens, Sven
AU - De Potter, Tom
AU - Seyler, Lucie
AU - van Laethem, Johan
AU - Hennebicq, Sophie
AU - Weytjens, Caroline
AU - Droogmans, Steven
AU - Cosyns, Bernard
PY - 2021/9/28
Y1 - 2021/9/28
N2 - BACKGROUND: Coronavirus disease 2019 (COVID-19) emerged as a worldwide health crisis, overwhelming healthcare systems. Elevated cardiac troponin T (cTn T) at admission was associated with increased in-hospital mortality. However, data addressing the role of cTn T in major adverse cardiovascular events (MACE) in COVID-19 are scarce. Therefore, we assessed the role of baseline cTn T and cTn T kinetics for MACE and in-hospital mortality prediction in COVID-19.METHODS: Three hundred and ten patients were included prospectively. One hundred and eight patients were excluded due to incomplete records. Patients were divided into three groups according to cTn T kinetics: ascending, descending, and constant. The cTn T slope was defined as the ratio of the cTn T change over time. The primary and secondary endpoints were MACE and in-hospital mortality.RESULTS: Two hundred and two patients were included in the analysis (mean age 64.4 ± 16.7 years, 119 [58.9%] males). Mean duration of hospitalization was 14.0 ± 12.3 days. Sixty (29.7%) patients had MACE, and 40 (19.8%) patients died. Baseline cTn T predicted both endpoints (p = 0.047, hazard ratio [HR] 1.805, 95% confidence interval [CI] 1.009-3.231; p = 0.009, HR 2.322, 95% CI 1.234-4.369). Increased cTn T slope predicted mortality (p = 0.041, HR 1.006, 95% CI 1.000-1.011). Constant cTn T was associated with lower MACE and mortality (p = 0.000, HR 3.080, 95% CI 1.914-4.954, p = 0.000, HR 2.851, 95% CI 1.828-4.447).CONCLUSIONS: The present study emphasizes the additional role of cTn T testing in COVID-19 patients for risk stratification and improved diagnostic pathway and management.
AB - BACKGROUND: Coronavirus disease 2019 (COVID-19) emerged as a worldwide health crisis, overwhelming healthcare systems. Elevated cardiac troponin T (cTn T) at admission was associated with increased in-hospital mortality. However, data addressing the role of cTn T in major adverse cardiovascular events (MACE) in COVID-19 are scarce. Therefore, we assessed the role of baseline cTn T and cTn T kinetics for MACE and in-hospital mortality prediction in COVID-19.METHODS: Three hundred and ten patients were included prospectively. One hundred and eight patients were excluded due to incomplete records. Patients were divided into three groups according to cTn T kinetics: ascending, descending, and constant. The cTn T slope was defined as the ratio of the cTn T change over time. The primary and secondary endpoints were MACE and in-hospital mortality.RESULTS: Two hundred and two patients were included in the analysis (mean age 64.4 ± 16.7 years, 119 [58.9%] males). Mean duration of hospitalization was 14.0 ± 12.3 days. Sixty (29.7%) patients had MACE, and 40 (19.8%) patients died. Baseline cTn T predicted both endpoints (p = 0.047, hazard ratio [HR] 1.805, 95% confidence interval [CI] 1.009-3.231; p = 0.009, HR 2.322, 95% CI 1.234-4.369). Increased cTn T slope predicted mortality (p = 0.041, HR 1.006, 95% CI 1.000-1.011). Constant cTn T was associated with lower MACE and mortality (p = 0.000, HR 3.080, 95% CI 1.914-4.954, p = 0.000, HR 2.851, 95% CI 1.828-4.447).CONCLUSIONS: The present study emphasizes the additional role of cTn T testing in COVID-19 patients for risk stratification and improved diagnostic pathway and management.
KW - COVID-19
KW - cardiac troponin
KW - kinetics
KW - major cardiovascular adverse events
KW - mortality
KW - myocardial injury
UR - http://www.scopus.com/inward/record.url?scp=85123388271&partnerID=8YFLogxK
U2 - 10.5603/CJ.a2021.0104
DO - 10.5603/CJ.a2021.0104
M3 - Article
C2 - 34581431
VL - 28
SP - 807
EP - 815
JO - Cardiology Journal
JF - Cardiology Journal
SN - 1897-5593
IS - 6
M1 - 84274
ER -