Projecten per jaar
Samenvatting
In real-world problems, decision makers often have to balance mul- tiple objectives, which can result in trade-offs. One approach to finding a compromise is to use a multi-objective approach, which builds a set of all optimal trade-offs called a Pareto front. Learning the Pareto front requires exploring many different parts of the state- space, which can be time-consuming and increase the chances of encountering undesired or dangerous parts of the state-space. In this preliminary work, we propose a method that combines two frameworks, Pareto Conditioned Networks (PCN) and Wasserstein auto-encoded MDPs (WAE-MDPs), to efficiently learn all possible trade-offs while providing formal guarantees on the learned poli- cies. The proposed method learns the Pareto-optimal policies while providing safety and performance guarantees, especially towards unexpected events, in the multi-objective setting.
Originele taal-2 | English |
---|---|
Titel | Proc. of the Adaptive and Learning Agents Workshop (ALA 2023) |
Redacteuren | Francisco Cruz, Conor F. Hayes , Caroline Wang, Connor Yates |
Plaats van productie | London, UK |
Pagina's | 1-7 |
Aantal pagina's | 7 |
Volume | https://alaworkshop2023.github.io/ |
Uitgave | 15 |
ISBN van elektronische versie | None |
Status | Published - 29 mei 2023 |
Evenement | 2023 Adaptive and Learning Agents Workshop at AAMAS - London, United Kingdom Duur: 29 mei 2023 → 30 mei 2023 https://alaworkshop2023.github.io |
Workshop
Workshop | 2023 Adaptive and Learning Agents Workshop at AAMAS |
---|---|
Verkorte titel | ALA 2023 |
Land/Regio | United Kingdom |
Stad | London |
Periode | 29/05/23 → 30/05/23 |
Internet adres |
Projecten
- 2 Actief
-
VLAAI1: Vlaams Artificiële Intelligentie Onderzoeksprogramma (VAIOP) – tweede cyclus
1/01/24 → 31/12/28
Project: Toegepast
-
iBOF/21/027: DESCARTES - infectieziekten economie en artificiële intelligentie met garanties
Nowe, A., Hens, N. & Beutels, P.
1/01/21 → 31/12/26
Project: Fundamenteel