Weighted tensor decomposition for approximate decoupling of multivariate polynomials

Gabriel Hollander, Philippe Dreesen, Mariya Ishteva, Joannes Schoukens

Onderzoeksoutput: Meeting abstract (Book)

Samenvatting

In the field of nonlinear system identification, one special type of models are the so-called block-oriented models, and more specifically the Wiener-Hammerstein models. When identifying parallel Wiener-Hammerstein systems, a coupled multiple-input-multiple-output polynomial based on noisy input-output data should be decoupled into a set of single-input-single-output functions. In this work, we will generalize an earlier decoupling algorithm to the case where an exact decoupling does not exist, but there is information regarding the uncertainty available through the covariance matrix of the coefficients of function to be decoupled.
Originele taal-2English
TitelTDA 2016, Workshop on Tensor Decompositions and Applications, Leuven, Belgium, January 18 - 22, 2016
UitgeverijKUleuven
Pagina's53-53
Aantal pagina's1
StatusPublished - 18 jan. 2016
EvenementTDA 2016, Workshop on Tensor Decompositions and Applications - Leuven, Belgium
Duur: 18 jan. 201622 jan. 2016

Workshop

WorkshopTDA 2016, Workshop on Tensor Decompositions and Applications
Land/RegioBelgium
StadLeuven
Periode18/01/1622/01/16

Vingerafdruk

Duik in de onderzoeksthema's van 'Weighted tensor decomposition for approximate decoupling of multivariate polynomials'. Samen vormen ze een unieke vingerafdruk.

Citeer dit