Weighted Tensor Decomposition for Approximate Decoupling of Multivariate Polynomials

Gabriel Hollander, Philippe Dreesen, Mariya Kamenova Ishteva, Joannes Franciscus Schoukens

Onderzoeksoutput: Unpublished paper

Samenvatting

In the field of system identification, one special type of nonlinear models are the so-called block-oriented models, consisting of linear time-invariant blocks and nonlinear static blocks. More specifically, this presentation will focus its attention on the parallel Wiener-Hammerstein models. When identifying these types of systems, a multiple-input-multiple-output polynomial should be decoupled, that was obtained from noisy measurements. In our work, an earlier developed decoupling algorithm with good results in the noiseless case is generalized to the noisy case.
Originele taal-2English
Pagina's21
Aantal pagina's1
StatusPublished - 22 mrt. 2016
Evenement35th Benelux Meeting on Systems and Control, - Soesterberg, Netherlands
Duur: 22 mrt. 201624 mrt. 2016

Conference

Conference35th Benelux Meeting on Systems and Control,
Land/RegioNetherlands
StadSoesterberg
Periode22/03/1624/03/16

Vingerafdruk

Duik in de onderzoeksthema's van 'Weighted Tensor Decomposition for Approximate Decoupling of Multivariate Polynomials'. Samen vormen ze een unieke vingerafdruk.

Citeer dit