Projecten per jaar
Samenvatting
In this paper, we investigate how the prediction paradigm from machine learning and Natural Language Processing (NLP) can be put to use in computational historical linguistics. We propose word prediction as an intermediate task, where the forms of unseen words in some target language are predicted from the forms of the corresponding words in a source language. Word prediction allows us to develop algorithms for phylogenetic tree reconstruction, sound correspondence identification and cognate detection, in ways close to attested methods for linguistic reconstruction. We will discuss different factors, such as data representation and the choice of machine learning model, that have to be taken into account when applying prediction methods in historical linguistics. We present our own implementations and evaluate them on different tasks in historical linguistics.
Originele taal-2 | English |
---|---|
Pagina's (van-tot) | 295–336 |
Aantal pagina's | 42 |
Tijdschrift | Journal of Language Modelling |
Volume | 8 |
Nummer van het tijdschrift | 2 |
DOI's | |
Status | Published - 4 feb 2021 |
Evenement | Phylogenetic Methods in Historical Linguistics - Tübingen University, Tübingen, Germany Duur: 27 mrt 2017 → 30 mrt 2017 |
Vingerafdruk
Duik in de onderzoeksthema's van 'Word prediction in computational historical linguistics'. Samen vormen ze een unieke vingerafdruk.Projecten
- 2 Actief
-
FWOTM1012: Het identificeren van de drijvende krachten achter taalverandering met behulp van neurale agent-gebaseerde modellen
1/11/20 → 31/10/24
Project: Fundamenteel
-
VLAAI1: Subsidie: Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen
1/07/19 → 31/12/24
Project: Toegepast
Datasets
-
Interactive notebook accompanying article "Word prediction in computational historical linguistics"
Dekker, P. (Creator) & Zuidema, W. (Creator), GitHub, 1 feb 2021
https://github.com/peterdekker/prediction-histling/
Dataset
Prijzen
-
FWO predoctoral fellowship fundamental research: Identifying drivers of language change using neural agent-based models
Dekker, Peter (Recipient), 8 okt 2020
Prijs: Fellowship awarded competitively