Zassenhaus conjecture for cyclic-by-abelian groups

Leo Margolis, Angel Del Rio, Mauricio José Caicedo Borrero

Onderzoeksoutput: Articlepeer review

27 Citaten (Scopus)


Zassenhaus Conjecture for torsion units states that every augmentation 1 torsion unit of the integral group ring of a finite group G is conjugate to an element of G in the units of the rational group algebra ℚ G. This conjecture has been proved for nilpotent groups, metacyclic groups and some other families of groups. It has been also proved for some special groups. We prove the conjecture for cyclic-by-abelian groups.
Originele taal-2English
Pagina's (van-tot)65–78
Aantal pagina's14
TijdschriftJournal of the London Mathematical Society
Nummer van het tijdschrift1
StatusPublished - 2013


Duik in de onderzoeksthema's van 'Zassenhaus conjecture for cyclic-by-abelian groups'. Samen vormen ze een unieke vingerafdruk.

Citeer dit